13 research outputs found

    Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, a review

    Get PDF
    Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccin

    The potential of soluble human leukocyte antigen molecules for early cancer detection and therapeutic vaccine design

    Get PDF
    Human leukocyte antigen (HLA) molecules are essential for anti-tumor immunity, as they display tumor-derived peptides to drive tumor eradication by cytotoxic T lymphocytes. HLA molecules are primarily studied as peptide-loaded complexes on cell membranes (mHLA) and much less attention is given to their secretion as soluble HLA–peptide complexes (sHLA) into bodily fluids. Yet sHLA levels are altered in various pathologies including cancer, and are thus of high interest as biomarkers. Disconcordance in results across studies, however, hampers interpretation and generalization of the relationship between sHLA levels and cancer presence, thereby impairing its use as a biomarker. Furthermore, the question remains to what extent sHLA complexes exert immunomodulatory effects and whether shifts in sHLA levels contribute to disease or are only a consequence of disease. sHLA complexes can also bear tumor-derived peptides and recent advancements in mass spectrometry now permit closer sHLA peptide cargo analysis. sHLA peptide cargo may represent a “liquid biopsy” that could facilitate the use of sHLA for cancer diagnosis and target identification for therapeutic vaccination. This review aims to outline the contradictory and unexplored aspects of sHLA and to provide direction on how the full potential of sHLA as a quantitative and qualitative biomarker can be exploited

    Designing the next-generation therapeutic vaccines to cure chronic hepatitis B: focus on antigen presentation, vaccine properties and effect measures

    Get PDF
    In the mid-90s, hepatitis B virus (HBV)-directed immune responses were for the first time investigated in detail and revealed suboptimal T-cell responses in chronic HBV patients. Based on these studies, therapeutic vaccination exploiting the antigen presentation capacity of dendritic cells to prime and/or boost HBV-specific T-cell responses was considered highly promising. Now, 25 years later, it has not yet delivered this promise. In this review, we summarise what has been clinically tested in terms of antigen targets and vaccine forms, how the immunological and therapeutic effects of these vaccines were assessed and what major clinical and immunological findings were reported. We combine the lessons learned from these trials with the most recent insights on HBV antigen presentation, T-cell responses, vaccine composition, antiviral and immune-modulatory drugs and disease biomarkers to derive novel opportunities for the next generation of therapeutic vaccines designed to cure chronic HBV either alone or in combination therapy

    Harnessing RNA sequencing for global, unbiased evaluation of two new adjuvants for dendritic-cell immunotherapy

    Get PDF
    Effective stimulation of immune cells is crucial for the success of cancer immunotherapies. Current approaches to evaluate the efficiency of stimuli are mainly defined by known flow cytometry-based cell activation or cell maturation markers. This method however does not give a complete overview of the achieved activation state and may leave important side effects unnoticed. Here, we used an unbiased RNA sequencing (RNA-seq)-based approach to compare the capacity of four clinical-grade dendritic cell (DC) activation stimuli used to prepare DC-vaccines composed of various types of DC subsets; the already clinically applied GM-CSF and Frühsommer meningoencephalitis (FSME) prophylactic vaccine and the novel clinical grade adjuvants protamine-RNA complexes (pRNA) and CpG-P. We found that GM-CSF and pRNA had similar effects on their target cells, whereas pRNA and CpG-P induced stronger type I interferon (IFN) expression than FSME. In general, the pathways most affected by all stimuli were related to immune activity and cell migration. GMCSF stimulation, however, also induced a significant increase of genes related to nonsense-mediated decay, indicating a possible deleterious effect of this stimulus. Taken together, the two novel stimuli appear to be promising alternatives. Our study demonstrates how RNA-seq based investigation of changes in a large number of genes and gene groups can be exploited for fast and unbiased, global evaluation of clinicalgrade stimuli, as opposed to the general limited evaluation of a pre-specified set of genes, by which one might miss important biological effects that are detrimental for vaccine efficacy

    HBV-derived synthetic long peptide can boost CD4+ and CD8+ T-cell responses in chronic HBV patients ex vivo

    Get PDF
    Background. Vaccination with synthetic long peptides (SLP) is a promising new treatment strategy for chronic hepatitis B virus (CHB). SLP can induce broad T-cell responses for all HLA types. Here we investigated the ability of a prototype HBV-core (HBc)- sequence-derived SLP to boost HBV-specific T cells in CHB patients ex vivo. Methods. HBc-SLP was used to assess cross-presentation by monocyte-derived dendritic cells (moDC) and BDCA1+ blood myeloid DC (mDC) to engineered HBV-specific CD8+ T cells. Autologous SLP-loaded and toll-like receptor (TLR)-stimulated DC were used to activate patient HBc-specific CD8+ and CD4+ T cells. Results. HBV-SLP was cross-presented by moDC, which was further enhanced by adjuvants. Patient-derived SLP-loaded moDC significantly increased autologous HBcAg18-27-specific CD8+ T cells and CD4+ T cells ex vivo. HBV-specific T cells were functional as they synthesized tumor necrosis factor-alpha and interferon-gamma. In 6/7 of patients blockade of PD-L1 further increased SLP effects. Also, importantly, patient-derived BDCA1+ mDC cross-presented and activated autologous T-cell responses ex vivo. Conclusions. As a proof of concept, we showed a prototype HBc-SLP can boost T-cell responses in patients ex vivo. These results pave the way for the development of a therapeutic SLP-based vaccine to induce effective HBV-specific adaptive immune responses in CHB patients

    Elevated serum levels of soluble CD14 in HBeAg-positive chronic HBV patients upon Peginterferon treatment are associated with treatment response

    Get PDF
    Pegylated IFNα (PEG-IFN) is one of the treatment options for chronic HBV (CHB) patients. However, the high patient treatment burden and limited response rate together clearly ask for biomarkers to predict PEG-IFN response. Soluble CD14 (sCD14) is considered a marker for immune activation and has been shown to predict clinical outcome of HIV infection. However, studies on sCD14 in CHB infection are inconclusive, and its relationship with clinical outcome is largely unknown. Here, we measured sCD14 levels in CHB patients and investigated whether changes in sCD14 level related to PEG-IFN response. Serum sCD14 levels were determined in 15 healthy controls, 15 acute self-limited HBV, 60 CHB patients in different disease phases and 94 HBeAg+ CHB patients at week 0 and week 12 of a 52-week PEG-IFN treatment. Response to PEG-IFN treatment was defined as HBeAg seroconversion or HBeAg loss at 26 weeks post-treatment. The mean sCD14 level in acute HBV patients (3.0 µg/mL) was significantly higher than in CHB patients (2.4 µg/mL) and healthy controls (2.4 µg/mL). In CHB patients receiving PEG-IFN, a significant increase in sCD14 was found after 12-week treatment (median week 0:2.1 µg/mL; week 12:3.7 µg/mL). After 12-week treatment, the fold change (FC = w12/w0) in sCD14 was significantly higher in responders compared to nonresponders (HBeAg seroconversion: median FCresponder = 2.1 vs FCnonresponder = 1.6; HBeAg loss: median FCresponder = 2.2 vs FCnonresponder = 1.5). Receiver operating characteristic curves demonstrated that FC-sCD14wk12/wk0 levels can be of significant value as a stopping rule to select patients at week 12 who are not likely to benefit from further PEG-IFN treatment

    Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength

    Get PDF
    Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Po

    Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death

    Get PDF
    Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation. Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c+ DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c+ DCs are critical mediators of immune responses induced by ICD

    Design of TLR2-ligand-synthetic long peptide conjugates for therapeutic vaccination of chronic HBV patients

    Get PDF
    Synthetic long peptide (SLP) vaccination is a promising new treatment strategy for patients with a chronic hepatitis B virus (HBV) infection. We have previously shown that a prototype HBV-core protein derived SLP was capable of boosting CD4+ and CD8+ T cell responses in the presence of a TLR2-ligand in chronic HBV patients ex vivo. For optimal efficacy of a therapeutic vaccine in vivo, adjuvants can be conjugated to the SLP to ensure delivery of both the antigen and the co-stimulatory signal to the same antigen-presenting cell (APC). Dendritic cells (DCs) express the receptor for the adjuvant and are optimally equipped to efficiently process and present the SLP-contained epitopes to T cells. Here, we investigated TLR2-ligand conjugation of the prototype HBV-core SLP. Results indicated that TLR2-ligand conjugation reduced cross-presentation efficiency of the SLP-contained epitope by both monocyte-derived and naturally occurring DC subsets. Importantly, cross-presentation was improved after optimization of the conjugate by either shortening the SLP or by placing a valine-citrulline linker between the TLR2-ligand and the long SLP, to facilitate endosomal dissociation of SLP and TLR2-ligand after uptake. HBV-core SLP conjugates also triggered functional patient T cell responses ex vivo. These results provide an import step forward in the design of a therapeutic SLP-based vaccine to cure chronic HBV
    corecore